

# Identifying Potential Nesting of Fiber Quality Alleles within the Population Structure of Obsolete U.S. Cotton Cultivars

Mitchell Schumann Dr. C. Wayne Smith Dr. Alan Dabney

## Fiber Quality in Upland Cotton

- ▶ Cotton (G. hirsutum) 95% of global cotton fiber production
  - ▶ US largest exporter of cotton
  - ▶ Texas largest export commodity
    - ▶ 1.6 Billion Dollars to Texas economy (Texasagriculture.gov, 2016)
- Improving fiber quality is important
  - listed as an important priority producers want from science (Hake 2016)
  - ► Allow for use in more efficient textile technologies
  - Produce better products
  - Obtain a premium for farmers

## Fiber Quality in Upland Cotton

- ► High Volume Instrumentation (HVI) was not widely implemented into breeding programs until the 1980s and 90s.
  - ▶ 100 years of selections not using these technologies
  - ► Many sources of superior fiber quality alleles likely overlooked
- ► Advanced Fiber Information System (AFIS) was developed in the 1990s (cost limits use/acceptance)

## **Genetic Diversity of Cotton**

- ► Most cotton cultivars in the United States can be traced back to an original 1806 introduction from Mexico (Smith and Cothren 1999)
- ► Many genetic studies corroborate a narrow genetic diversity (Paterson 2009 and references therein)
- ► Low genetic diversity could allow for tapping into standing genetic variation of obsolete cultivars without much yield drag (Tyagi et al. 2014)
- ► Can we tap into alleles that may have been overlooked from the USDA Obsolete US Cultivar Collection using genomic selection?
  - ▶ What role does population structure play with fiber quality?
    - ▶ Lui et al. 2015 (PlOS one), Wientjes et al. 2013 (Genetics), exc.

# What We are Working With

- Genotype information on 258 obsolete US cotton Cultivars
  - Selected based on SSR diversity analysis of collection
    - ► Hinze et al. 2015 (TAG)
  - ► Genotyped using 63K SNP array
    - ► Hulse-Kemp et al. 2015 (G3)
    - ► Approximately 24,000 high confidence SNPs
- ▶ Phenotype data on sub-sample of 128 cultivars
  - ▶ Planted in 2016 using RCBD with 3 replications in 2 locations
  - ► HVI & AFIS
    - ► Waiting on spin data

# **US Cotton Growing Regions**



#### 2 Dimensional PCoA Colored by Location





# **Quantifying Population Structure**

#### fastStructure

- ▶ Raj et al. 2014 (Genetics)
- ► K=1 through K=10
  - ► Not clear at distinguishing the best model
- ▶ Combined with PCoA to see what makes the most sense



# What Markers Contribute the Most to Population Structure



# Prediction Error Comparison for Full and Reduced Random Forest Model

| Model   | 1 <sup>st</sup> Quartile | 2 <sup>nd</sup> Quartile | Median | Mean    | 3 <sup>rd</sup> Quartile | 4 <sup>th</sup> Quartile |
|---------|--------------------------|--------------------------|--------|---------|--------------------------|--------------------------|
| Full    | 0.07364                  | 0.09302                  | 0.1008 | 0.09767 | 0.1037                   | 0.1124                   |
| Reduced | 0.0814                   | 0.09012                  | 0.0969 | 0.09574 | 0.09981                  | 0.1085                   |

▶ 10 Replications of K = 10 Folds Cross Validation

# What Markers Contribute the Most to Population Structure







# Potential Problem of Overfitting



# Summary

- ► This analysis does appear to Identify nesting fiber quality alleles in population structure.
- ► This information could prove useful in developing training populations for genomic selection, developing GWAS population, and in general breeding decision making.
- **▶** Potential Problem of Overfitting

### **Thanks**

- Cotton Incorporated
  - ▶ Dr. Don Jones



**COTTON INCORPORATED** 

- ► FBRI Fiber Initiative-Texas Tech University
  - ▶ Dr. Eric Hequet, Zach Hinds
- ► Cotton Improvement Lab- Texas A&M University
  - ▶ Dr. C. Wayne Smith, Dr. Steve Hague Mrs. Dawn Deno, Graduate Students, Undergraduate Workers
- **► TIGSS** 
  - ▶ Dr. Andrew Hillhouse, Kelli Kochan
- **▶** Important Contributers
  - ▶ Dr. Alan Dabney, Dr. Lori Hinze, Dr. David Stelly

